skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tandon, Niket"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup costs of reinforcement learning. While recent work, e.g., Reflexion, has demonstrated how such agents can also self-improve by adding a textual memory of ''hints'' learned from prior experience, such improvements have been limited both in size and scope. In contrast, our goal is a language agent that can robustly improve performance over time, including when both the task and environment are varied. Our approach is to have the agent learn a textual representation of how the world works (rather than just isolated hints), expressed as a memory of causal abstractions, to guide future decision-making. In experiments, we find CLIN is able to continually improve on repeated trials on the same task and environment, outperforming state-of-the-art reflective language agents like Reflexion by 23 points in ScienceWorld and 1.4 points in ALFWorld benchmarks. CLIN can also transfer its learning to new environments and tasks, enhancing performance by 21 points in ScienceWorld and 11 points in ALFWorld 
    more » « less
  2. Planning in a text-based environment continues to be a significant challenge for AI systems. Recent approaches have utilized language models to predict planning domain definitions (e.g., PDDL) but have only been evaluated in closed-domain simulated environments. To address this, we present Proc2PDDL, the first dataset containing open-domain procedural texts paired with expert-annotated PDDL representations. Using this dataset, we evaluate the task of predicting domain actions (parameters, preconditions, and effects). We experiment with various large language models (LLMs) and prompting mechanisms, including a novel instruction inspired by the zone of proximal development (ZPD), which reconstructs the task as incremental basic skills. Our results demonstrate that Proc2PDDL is highly challenging for end-to-end LLMs, with GPT-3.5’s success rate close to 0% and GPT-4o’s 38%. With ZPD instructions, GPT-4o’s success rate increases to 45%, outperforming regular chain-of-thought prompting’s 34%. Our analysis systematically examines both syntactic and semantic errors, providing insights into the strengths and weaknesses of language models in generating domain-specific programs. 
    more » « less